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Abstract— Navigation among movable obstacles (NAMO) is
a fundamental task in various applications. Existing NAMO
solutions usually assume that the robot operates in an ideal
world with perfect observation and actions or a full knowledge
on the environment. These assumptions limit their applicability
on real robots and may result in risky actions. We propose
a method (NAMOUnc) with consideration of multiple uncer-
tainties, including observation noise, action failure, prediction
uncertainty and uncertainty caused by partial observability.
Based on the estimated uncertainties, the robot makes decision
by comparing the time cost interval to reach the goal, then
achieves the joint optimization on the time cost and success rate.
We evaluate the proposed algorithm in both simulated and real
environments and compare it with latest NAMO frameworks.

I. INTRODUCTION

In real applications, robots take actions with partial and
noisy observation on the environment, and a given action
may cause unexpected effect due to uncertainties. If the robot
has over confidence on the observation and action, it can
lead to some suboptimal decisions, even dangerous actions
resulting in catastrophic effects, like destroying objects in the
workspace. It is therefore essential for the robot to recognize
the limitation of its observations and actions, and make
decisions with awareness of uncertainty and risks.

Recent works on task and motion planning incorporate
uncertainty and update plans based on the observation and
action uncertainties. For example [1], [2] take success rate
(SR) into account in a manipulation task: if a grasp action
fails, the planner updates its SR estimate, then replans
for an action sequence with higher SR. Methods such as
probabilistic symbolic planning [3] or Bayes optimization [4]
plan with uncertainty but mainly focus on optimizing SR.
They often neglect joint optimization with efficiency, which
is crucial for navigation tasks.

Navigation among movable obstacles (NAMO) task is
mainly a navigation task but the robot is able to manipulate
movable obstacles (MO). Many existing solutions (e.g., [5],
[6]) consider NAMO as a manipulation task, assuming
manipulation is necessary to complete the task. However, the
most common case is that the task can be finished without
moving the MO. This oversight makes their probability-
based optimization less useful, since when a bypass is
possible, its SR being close to 1, it will be chosen even
if it takes much more time. Besides, in partial observation
(PO) condition, the invisible region in NAMO task is much

Website: kai-zhang-er.github.io/namo-uncertainty/

! Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

2 U21S, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
kai.zhang@ip-paris.fr

IRFENS]
1y : Y <

Observation uncertainty Action uncertainty

Model approximation Partial Observabilify

Fig. 1.  Uncertainty sources in a NAMO task. Fours uncertainties are
considered when the robot completes a NAMO task. The blue rectangle
means the MO and the green triangle with R means the robot.

larger than in the manipulation task. The common strategy of
reducing this uncertainty in manipulation task by iteratively
observing the occluded region [4], is inefficient or impracti-
cal for some NAMO tasks.

This paper presents NAMOUnc, a method for solving
NAMO tasks by optimizing SR and running time in real sce-
narios. It considers several uncertainties (Fig. 1): (a) observa-
tion uncertainty from sensor noise, (b) model approximation
uncertainty, (c) action uncertainty from imperfect controllers,
and (d) blockage uncertainty from PO. NAMOUnc estimates
these uncertainties as cost intervals and makes decisions
based on their utility values, balancing removal and bypass
strategies to achieve efficient and successful navigation.

In summary, our contribution includes: 1) A method to
solve NAMO tasks with SR optimization and efficiency in
partial observation conditions. 2) Four modules to system-
atically estimate and quantify the uncertainties described in
Fig. 1 and a decision function to trade-off between SR and
efficiency. 3) A novel method to estimate the uncertainty
caused by PO in unexplored region, which can effectively
reduce the navigation risk and improve the efficiency. 4) Ex-
periments in simulated and real environments to demonstrate
the effectiveness of our method.

II. RELATED WORK
A. Navigation among movable obstacles

The NAMO task has been explored for a long time and
recently proposed approaches to solve it include end-to-
end [7] and hybrid methods [8], [5], [9]. The end-to-end
methods are usually based on hierarchical reinforcement
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learning [7], which produce high-level subgoals and low-
level control parameters. The hybrid methods use machine
learning either to generate subgoals [9] or help with the
action sequence generation [5]. A recent detailed review can
be found in [10].

All these methods are with the sole objective of complet-
ing the task regardless of the achieving cost. Our previous
work [11] allows to choose a strategy based on estimated
cost, jointly optimizing SR and efficiency. However, this
method does not account for uncertainty, limiting its gen-
eralization capability.

B. Planning with uncertainty

Uncertainty in real environments leads to more challenges
and methods are proposed to deal with different uncertain-
ties such as observation uncertainty, action uncertainty and
uncertainty linked to partial observation.

The observation uncertainty in task planning refers to the
belief on object class and pose. The object classification
uncertainty has been widely studied in computer vision
field [12] and a confidence score is usually provided to
quantify the uncertainty. The pose uncertainty results from
the noisy sensors and it is typically modeled as Gaussian
distribution and alleviated by repeated observation [13], [14].

The action uncertainty appeals to more attention. In the
sampling based methods, the action uncertainty is described
as a probabilistic transition matrix. This matrix can be
obtained by approximation methods with frequent replan-
ning [14] or learning methods that gather information from
demonstration or datasets [3]. With the transition matrix, the
most likely successful plan is selected and executed. Rather
than take it as open-loop plan, some methods [2] update the
transition probability after observing the action effect and
adjust the plan iteratively to achieve the task.

Regarding uncertainty from partial observation, most
methods [5], [4], [15] constrain actions to the sensor’s field
of view. In a manipulation task, [4], [14] characterize the
probability of unseen objects behind the visible ones and
use it in the planning to perform exploration actions when
necessary. For NAMO, RNAMO [15] simply proposes that
the robot pushes all obstacles blocking the path in the
invisible area. If the obstacles are not movable, an internal
map is updated and a detour is planned to the goal. In larger
workspace, LaMB [5] uses backward reasoning to eliminate
environmental invisibility for task planning. However, this
approach is limited to small workspace as it explores all
invisible regions which is impractical in large environments.
To minimize the cost, we propose a method to quantify the
possible cost to go through the invisible region and find an
optimized trade-off between exploration (bypass in unknown
area) and exploitation (move object in visible area).

III. NAVIGATION AMONG MOVABLE OBSTACLES

In a NAMO task, shown in Fig 2, a robot needs to navigate
to a goal while avoiding obstacles. With the environment
map, the first step is to plan and follow the shortest path. If
the robot meets an MO blocking this path, it can choose to

bypass it or clear the path by removing it. As described in
our previous work [11], we first estimates the bypass and
removal cost before making decision. The bypass cost is
calculated based on a detour trajectory. The removal cost
is computed in two steps: predicting the stock region for the
MO, then estimating the time to more the MO to this region.
According to the decision, the motion planner outputs the
control parameters for the robot to execute the task.

The uncertainty in various modules can cause task failure.
In MO detection and localization, the observation uncer-
tainty, including recognition and pose estimation uncertainty,
may result in collision or the failure of removal action. For
the cost estimation of bypass and removal, the model uncer-
tainty may produce an incorrect estimate. If the robot chooses
to remove the MO, the action may fail due to the insufficient
knowledge or the discrepancy between estimated and actual
action effect. Additionally, navigating in partially observed
environments introduces inherent uncertainty, creating a gap
between expectation and reality.

IV. UNCERTAINTY ESTIMATION METHOD

We detail the four kind of uncertainties considered in the
NAMO tasks and the methods to estimate them. We use
time intervals, represented as [ ], to represent the effect of
uncertainty on the decision-making module.

A. Observation uncertainty

While navigating the environment, the robot should local-
ize the MOs and detect whether the planned path is blocked.
Due to the sensors’ noise in object detection and localization
error of the robot, the estimated MO pose is subject to
uncertainty. However, multiple observation can refine the
result, and given a specified confidence interval, a belief
region can be calculated for path blockage determination.

The obstacle pose is the robot pose plus the offset from
robot frame. Assuming the robot pose from the localization
algorithm is X, = (x,,y,,0,) with covariance X,, and the
relative distance and angle of the i-th MO measured by the
depth camera Y' = (d', ¢’) with covariance Xy, the obstacle
pose Xi,, can be obtained by: X!, = (x, + d'cos(6, +
0"),y, +d'sin(6,+¢"))T and the covariance matrix X0 by:

IXio. , _ 9Xio
X, = Y oyi

When multiple observations on the same MO are received,
a Kalman filter [16] is applied to fuse the repeated observa-
tion and obtain the estimated MO pose and its covariance.

Given a confidence score Tipnr (We use Teonr = 95%), the
belief region of the MO pose is represented as an ellipse
computed from the covariance matrix. We add the size of
the MO, expressed as its radius, to obtain the ellipse region
where a path would lead to collision. In this case, the robot
stops and choose the best strategy as described in Sec. IV-E.

o =J Il + LIy ]

y>° Jr:

B. Bypass cost model uncertainty

Bypass cost, i.e., the estimated travel time to reach the goal
when the robot follows the planned detour, varies according
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to the trajectory and moving speed. The model that predicts
navigation time for the trajectory has uncertainty that we
represent as an interval.

To plan the detour, the MO and its uncertainty region
(ellipse with 95% confidence described in sec IV-A) is
temporarily added to the obstacle map, then the shortest path
planner searches an alternative path to bypass the MO. If no
path is found, the bypass time cost is set to CZZV = Inf.
If there is, we need to estimate the navigation time from
trajectory features. While the average speed was simply used
in [11], we use a Gaussian linear regressor (GLR) [17] for
better prediction and uncertainty evaluation (see Sec. V-C).

Indeed, as rotation takes more time than following straight
lines, we need to take the orientation change into account
during bypass time estimation. In addition to the trajectory
length F;, we therefore calculate the trajectory smoothness
F; and variance of direction change F, as features to estimate
the navigation time. Assuming a trajectory consists of N
waypoints pt;,i =0,1,..,N, each pt; characterized by position
pi and orienta}]ion a;, smoothness and variance are calculated
using: Fy = w, F, =var(|og — 0_1|). A trajectory
is therefore characterized by X = {F}, F;, F, }.

The bypass time cost and variance are predicted by
GLR: Ty, 05, = GLR(X). The navigation time interval with
Tonr (95%) confidence is : [C%v] = [Ty — 200y, Ty + 200y

To train the regressor, we collect a set of trajectories by
controlling the robot to navigate in a warehouse environment.
The pose and time stamp are recorded along these trajecto-
ries, and we create a large and varied dataset for the regressor
by sampling random start and goal points in these trajectories
and computing the corresponding features and duration.

C. Removal action uncertainty

The action uncertainty relates to the uncertain outcome of
loading a MO for displacement, which can be either success
or failure. Similar to [4], we model the success rate (SR) of
the action and the uncertainty of its estimation after ¢ trials,
pL, using a Beta distribution.

We start by an initial estimate of the SR and update it
during robot operation to reflect any change in the robot
behavior. To obtain the initial SR, pg, we control the robot
to load the MO in several trials and record the action

results. Assuming there are o successful trials and § failure
cases, the initial knowledge on the trial results can be
described as p? ~ Beta(a, B). During operation, when new
trials are performed, the updated posterior is p!, ~ Beta(ot +
s,B+ f) where s and f are the number of successful and
failed object movement respectively. With a confidence score
Teonf (Teony = 95% in our experiments), we can obtain the
SR interval p!, € [Beta.ppf(0.025), Beta.ppf(0.975)] where
the Beta.ppf is the point percent function to obtain the
confidence interval of a distribution given a confidence score.
For a given SR, the expected removal cost Cyp is

M
Cvo =Tuo Y, iph(1—pl) ™" + (MTyo +Cpy) (1 — pi)™
i=1
where M is the maximum times that the robot will try when
it fails to load a MO (M =5 in our experiments), Cpy is
the obstacle bypass cost, and Ty is the removal cost of a
MO that can be estimated by the method proposed in [11],
where a stock region predictor and a regressor are employed
to predict the placing pose and the removal time.
We compute the interval of the expected removal cost
[Cmo) by using this formula with the minimum and max-
imum p!, of the SR interval.

D. Blockage uncertainty

Blockage uncertainty comes from the partial observation
condition. It is the blocking probability of the robot by some
unseen MOs in unexplored region. It is related to the passage
width and robot size as it is more risky if the planned
navigation path passes a narrow passage than the open space.

Fig. 3. Blocking case. The blue circle represents the MO in a corridor
with width W;. The green dash curve is the planned trajectory of the robot
while the red dash line is the traversal line at waypoint pt;



To calculate the blockage probability of a trajectory T, we
take T as a set of way points pt;,i = 1,2,...,N and compute
the blockage probability of each way point.

We model the blockage probability based on several as-
sumptions (shown in Fig. 3): (i) The width of the passage W;
at pt;, (ii) The radius of the robot r, (iii) The diameter of the
MO, Iy0, modeled as a Gaussian distribution G(t, ) where
U is the average radius of the MOs and o is the standard de-
viation. (iv) The distance between the MO center and the wall
d, modeled as a uniform distribution d ~ U(IMTO,W,- — IMTO),
which leads to p(d|lyo,Wi) = 57—

Given d, lyo, r and W;, the blockage probability
p(b|d,lyo,W;,r) is deterministic:

bld,lyo,Wi,r) =
p(bld; o, W) {07 otherwise

To obtain the blockage probability conditioned only on the
passage width and the robot size p(b|W;,r), we eliminate the
dependence on d, [0 through marginalization:

Mo
2

u/l._
p(bllyo, Wi, r) = /MO p(bld, o, Wi, r)p(d|lyo,Wi,r)da

2
The blockage probability in a corridor is then:

p(b|Wi,r) = / p(bllsso. Werr) p(Iaro) diyy

Considering that [y satisfies a Gaussian distribution and
p(b|lyo,W;,r) is piecewise constant, we approximate this
integral by using a sampling method.

The previous p(b|W;,r) is calculated with the assumption
of a MO being on the line perpendicular to the corridor
passing through pt; (the red dash line in Fig. 3). Because
W; can be obtained from pf; using a ray casting algorithm,
and both are independent of r, the probability of blockage
at pt; can be expressed as p(b|pt;,r) = p(b|W;,r).

Assuming the MO is uniformly distributed in the space
with a free area A, the probability that the MO is in the
traversal line at pr; is p(pt;) = ujf‘K. Here K is a parameter
characterising the obstacle appearance probability.

Therefore, the probability that the robot is blocked at pt;
is p(b|pt;,r) x p(pt;). Then, for a trajectory T, the blockage
probability p(b|T,r) can be computed by:

T

W,K
p(b|T,r) =1 _H(l _p(blptivr) X A )
pli

The estimated cost of blockage when passing the invisible
region is then : [Cprockea] = P(P|T,7) X [Cho]

E. Decision making with uncertainty interval

The decision making module aims to compare the cost of
bypass and removal, and choose the one with smaller cost.

With the uncertainties considered, the final cost of each
option can be calculated by [Cp,] = [Ch]+ [CZ;O ckeal’ [Crel =
[CM 0] + [CZIV] + [Cl;7acked]‘ where [Cll))?]ocked] and [Cgiocked] are
the blockage costs of bypass and removal trajectories.

1, (2r>d—"MO\A (2r>W,—d— u0)

For the decision making between the cost intervals, we
apply the Laplace criterion, described in [ 18], to compute the
average utility of the consequences of each option. Assuming
the cost satisfies the uniform distribution, the utility function
can be expressed as:

) mar((C])+min((C])
U_/mchn pl)d 2

where [C] is either [Cy] or [Cp] to calculate the utility
while x and p(x) are samples in the cost interval and its
probability. Finally, the option with a smaller U is chosen as
the navigation strategy.

V. SIMULATION EXPERIMENTS

We first conduct individual modules evaluation in simula-
tion, and then compare our method with the state of the arts
before demonstrating a real robot application.

A. Simulation environment

We implement our method in two simulated environments,
a simple room and a large warehouse, as shown in Fig 4.
There is one MO in the room while multiple MOs can be
in the blue regions in the warehouse. A wheeled mobile
robot with an arm needs to complete navigation tasks. The
environment map (including only the static obstacles) is
generated using GMapping [19] and provided to the robot
as prior knowledge. A LiDAR and a stereo camera are used
to localize the robot and detect MOs respectively.

Fig. 4. Simulation environments.Two environments are used including a
simple room and a complex warehouse. The blue regions are possible places
for the MOs and the red region is the goal.

B. Implementation details

The room environment is built on PyBullet [20] while the
warehouse is based on Gazebo [21] and ROS Noetic [22]
with Movebase as the navigation framework. The robot
detects the MOs by Aruco Marker [23] to reduce the class
uncertainty. When a MO blocks the planned path, the deci-
sion module chooses a suitable avoidance strategy between
bypass and removal. All the experiments are implemented in
Python with PyTorch [24]. We use an Intel i7-12700H CPU
with 16G memory for the quantitative results.

C. Bypass time regression results

To demonstrate the improved bypass time prediction, we
compare the applied GLR predictor with the average speed
method from [I1] and a trapezoid method that considers
acceleration and deceleration. We collect a dataset including
1500 trajectory segments as training and 600 as testing. The



average speed method calculates the speed in the training
dataset, then applies it in the test set. For the GLR method, a
regressor is fitted on the training set to predict the test set. We
calculate the absolute error between the predicted and actual
navigation time. The result in Fig. 5 shows that the applied
GLR method outputs more accurate results with the lowest
median absolute error (1.59s), compared to the average
speed (3.43s) and trapezoid methods (3.31s). Additionally,
the GLR method is more stable, with an interquartile range
(IQR) of 0.69s, versus 1.35s and 1.91s for the other methods.

=
o

=]

o

IS

N

0

Running time absolute error(s)

Average speed Trapezoid GLR

Fig. 5. Boxplot of the absolute error of prediction results for the
three bypass time prediction methods. The box represents the interquartile
range (IQR), with the lower and upper edges indicating the 25th (Q1)
and 75th (Q3) percentiles, respectively. The notch and orange line in the
box marks the median value of the absolute error. Whiskers extend to the
smallest and largest values within 1.5 times the IQR from QI and Q3.

D. Action uncertainty module evaluation

To evaluate the effectiveness of modeling action uncer-
tainty, we compare the task completion time with (w/) and
without (w/0) the action uncertainty module in two cases:
one with easy MOs (90% loading SR) and one with hard
MOs (20% SR). We test the methods in three setups, ABC,
AB, BC. ABC (resp AB and BC) indicates three MOs are
in regions A, B and C (resp. 2 at AB and BC) in Fig. 4.

Real SR=0.9 Real SR=0.2
,‘;100 ABC ’l‘ 250 ABC
g AB T ° AB
=1 BC 200 BC
> 80
=4
g 150
. Us 5 o
= 60 100 .
8 50

w/o w/ w/o w/

Fig. 6. Task completion time comparison on methods with/without
considering action uncertainty in three environments, ABC, AB, BC. The
left figure shows the case with easy MO (high SR) while the right one
shows the hard MO (low SR).

The results in Fig 6 show that with easy MOs (SR=0.9),
the w/o method takes less time in planning and making
decision as it removes the MO at B directly. Conversely, the
method w/ has the robot bypass B first to check MOs in A or
C. If A and C are also blocked, the robot returns and removes
the MO in B, requiring more planning and navigation time.

When MOs are hard to manipulate (SR=0.2), the method
w/ bypass all MOs due to the high potential cost of removal
action, leading to faster navigation compared to w/o method

that repeatedly attempts to remove MOs regardless of the
cost. As for the stability, the w/ method demonstrates much
lower IQR with 2.53s for easy MOs and 1.35s for hard MOs,
compared to the w/o method’s 6.16s and 34.14s, respectively.

E. Ablation study on bias between estimated SR and real SR

To obtain the initial SR value, we conduct prior exper-
iments, as explained in Sec. IV-C. However, the estimated
and actual SR may differ, especially when assuming all
MOs share the same SR. Since SR relates to the estimated
removal cost and affects the navigation strategy, we analyze
the impact of errors in estimating the SR. The results on
the cases with and without estimation bias in environment
ABC are shown in Table I. All the times in the table are the
average of 5 trials. In method with action uncertainty (w/),
an unbiased SR estimation gives the best navigation strategy
with minimal time. Even with biased estimation, the method
w/ still outperforms the method w/o, proving the effective-
ness of the proposed action uncertainty module.

TABLE I
AVERAGE RUNNING TIME OF METHODS WITH UNBIASED/BIASED
ESTIMATION ON SR. THE CELL MARKED BOLD MEANS BETTER RESULT.

Estimated SR | Real SR w/o w/
0,90 0,90 68,99+4,42 93,80+4,53
unbiased 0,50 0,50 98,31+21,81 94,19+12,86
0,20 0,20 164,15+80,89 85,14+1,92
Avg 110,48 91,04
0.90 0,20 164,15+80,89 | 168,194+39,50
’ 0,50 98,31+21,81 109,24+15,91
0.50 0,20 164,15+80,89 | 113,46+22,17
biased ’ 0,90 68,99+4,42 91,03£6,95
0.20 0,50 98,31+21,81 85,57+2,31
? 0,90 68,99+4,42 84,45+2,42
Avg 110,48 108,66

F. Blockage uncertainty module evaluation

To compare the impact of introducing the blockage uncer-
tainty module, we design two environments AB and ABE
for evaluation (with obstacles at the corresponding positions
shown in Fig. 4). Environment AB demonstrates the differ-
ence of navigation strategy due to blockage uncertainty while
ABE illustrates the advantage of the blockage uncertainty
module when an unexpected MO appears on the detour.

The evaluation results in Table II report the mean runtime
of 5 trials. In environment AB, without considering the
blockage uncertainty (w/0), the robot bypasses all the MOs.
In contrast, the w/ method chooses to remove MO in region
B considering the potential blockage risk of the detour in
narrow passage. In AB where no surprising MO appears, the
bypass takes less time than the removal. However, in ABE,
where an unexpected MO blocks the detour, the method
w/o bypasses the MO in region B, then bypass E (failing
to find a suitable stock region for moving E), finally it
returns to remove the MO at B, taking much longer time
than the method w/ that removes B initially. From the overall
performance, the method w/ is more efficient comparing to
the method w/o.



TABLE I
AVERAGE RUNNING TIME OF METHOD WITH/WITHOUT BLOCKAGE
UNCERTAINTY IN TWO ENVIRONMENTS

Methods
Env w/o w/
AB 67,04+2,54 77,77+2,63
ABE 141,02+16,81 | 90,08+2,25
[ Overall [ 104,03 [ 83,92 ]
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Fig. 7. Running time in two simulation environments, the room (left)

and the warehouse (right). The outliers (circle around 300 in the figures)
represent the failure cases. The orange line in the box marks the median
value.

We evaluate the overall performance in the two simulation
environments (Fig. 4), with configurations of ABC, AB, BC,
ABE, ABD, BCE in the warehouse. The starting points
and goal points are randomly selected to create different
navigation tasks. Then, we compare our method with some
baseline methods, priority bypass [25], [26], priority removal,
random choice method and LaMB [5].

The priority bypass methods including TEB [25] and
A* [26], bypass all the obstacles but fail if there is no
alternative way to the goal. The priority removal method
refers to a category of NAMO methods [6], [27], which
removes the MOs that block the path without considering the
removal cost. The random choice method chooses to remove
or bypass with a probability (0.5 in our experiments). The
LaMB method [5] is one of the latest methods considering
the partial observation constraints in NAMO tasks but limited
to small scale environments.

We record the average running time (ART) and success
rate SR of each method. Tasks are marked as failed if
the goal is not reached within 300 seconds. Results for
ART are shown in Fig. 7. In the room environment, the
only path to the goal is blocked by a MO. Therefore,
the bypass method (A*) always fails. The NAMOUnc and
priority removal methods complete the task more quickly,
with the priority removal method slightly faster (77.68s vs.
79.56s) since it takes less time to plan bypass and make
decision. In the warehouse environment, the NAMOUnc and
the TEB methods finish the task with comparable time cost
but NAMOUnc has no failures.

VI. REAL EXPERIMENTS

A. Environment description

To evaluate the performance of our method in real appli-
cations, we use a real Jackal robot in a small warehouse-like

environment. As shown in Fig. 8, there are maximum 3 MOs
and the robot should navigate to a goal G. It is equipped with
a LiDAR and a realsense camera to observe the environment,
and an arm to lift the MO.

Fig. 8. Real environment setup. The blue regions marked as A, B, C are
possible positions of MOs. The red arrow with G is the goal.

B. Experiment results

We randomly pick goal points to create different NAMO
tasks and record the running time with different MO setups,
including environments ABC, AB and BC. The real SR is
set to 100% and quantitative results are shown in Table III,
where each cell indicates the average running time and
corresponding standard deviation on 5 trials. Although the
proposed method does not win the first place in each environ-
ment, from average running time, it achieves the best overall
performance on 3 setups. This shows that the proposed
method achieves a good trade-off between completeness and
efficiency in the search for a solution.

TABLE III
OVERALL PERFORMANCE COMPARISON AMONG DIFFERENT METHODS.
THE COLUMNS MARKED BOLD REPRESENT THE BEST RESULT

- Priority Random NAMOUnc
TEB[2] Removal Choice (Ours)
ABC N/A 96.33+9.01 | 115.34+14.58 | 137.69+13.19
BC 46.661+4.56 | 94.78+5.08 72.73+19.94 50.41+2.62
AB 61.11+4.90 | 97.94+5.72 | 107.44+22.40 72.56+2.09
Overall 96.35 98.5 86.88

VII. CONCLUSION AND FUTURE WORK

We have presented a NAMO framework capable of plan-
ning the task and motion under four kinds of uncertainty:
observation, action, model and blockage uncertainty. Our
planner jointly optimizes SR and running time. Experimental
results in both simulation and real environments demonstrate
its ability to balance these objectives, suggesting potential
extensions to optimize additional objectives like energy and
safety.
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